

Knowing the square numbers can help you estimate square roots.

1. Complete the table of squares.

1 ²	22	3 ²	4 ²	5 ²	6 ²	7 2	8 ²	92	10 ²
1									

11 ²	12 ²	13 ²	14 ²	15 ²	16 ²	17 ²	18 ²	19 ²	20 ²
121									

Use the table of squares above to help you estimate each square root to the nearest tenth.

Round to two decimal places.

	Square Root	Estimate
2.	$\sqrt{10}$	
3.	$\sqrt{20}$	
4.	$\sqrt{200}$	
5.	$\sqrt{300}$	
6.	$\sqrt{57}$	
7.	$\sqrt{130}$	

Think and	Discuss	

8. Discuss your strategy for estimating square roots.

xplain your strate				

To locate a square root between two integers, refer to the table.

Number	1	2	3	4	5	6	7	8	9	10
Square	1	4	9	16	25	36	49	64	81	100
Number	11	12	13	14	15	16	17	18	19	20
Square	121	144	169	196	225	256	289	324	361	400

Locate $\sqrt{260}$ between two integers.

260 is between the perfect squares 256 and 289: 256 < 260 < 289

 $\sqrt{256} < \sqrt{260} < \sqrt{289}$ So: $<\sqrt{260}<17$ And: 16

Use the table to complete the statements.

After locating a square root between two integers, you can determine which of the two integers the square root is closer to.

27 is between the perfect squares 25 and 36:

25 < 27 < 36 So: $\sqrt{25} < \sqrt{27} < \sqrt{36}$ And: 5 $< \sqrt{27} < 6$

The difference between 27 and 25 is 2: the difference between 36 and 27 is 9.

So. $\sqrt{27}$ is closer to 5.

Complete the statements.

$$\sqrt{106}$$
 is closer to _____ than ____ $\sqrt{250}$ is closer to ____ than ____

Name	Period	Date	

Each square root is between two integers. Name the integers.

1.
$$\sqrt{10}$$

2.
$$\sqrt{24}$$

4.
$$\sqrt{39}$$

Find each value to the nearest tenth.

9.
$$\sqrt{18}$$

11.
$$\sqrt{19}$$

10.
$$\sqrt{63}$$
 11. $\sqrt{19}$ **12.** $\sqrt{41}$

The length of the hypotenuse of a right triangle is the square root of the sum of the squares of the measures of the other two legs of the triangle. Approximate the length of the hypotenuse of a right triangle if the legs have measures 12 and 15.